Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.776
1.
J Cell Mol Med ; 28(9): e18351, 2024 May.
Article En | MEDLINE | ID: mdl-38693854

Coronary artery bypass grafting (CABG) is an effective treatment for coronary heart disease, with vascular transplantation as the key procedure. Intimal hyperplasia (IH) gradually leads to vascular stenosis, seriously affecting the curative effect of CABG. Mesenchymal stem cells (MSCs) were used to alleviate IH, but the effect was not satisfactory. This work aimed to investigate whether lncRNA MIR155HG could improve the efficacy of MSCs in the treatment of IH and to elucidate the role of the competing endogenous RNA (ceRNA). The effect of MIR155HG on MSCs function was investigated, while the proteins involved were assessed. IH was detected by HE and Van Gieson staining. miRNAs as the target of lncRNA were selected by bioinformatics analysis. qRT-PCR and dual-luciferase reporter assay were performed to verify the binding sites of lncRNA-miRNA. The apoptosis, Elisa and tube formation assay revealed the effect of ceRNA on the endothelial protection of MIR155HG-MSCs. We observed that MIR155HG improved the effect of MSCs on IH by promoting viability and migration. MIR155HG worked as a sponge for miR-205. MIR155HG/miR-205 significantly improved the function of MSCs, avoiding apoptosis and inducing angiogenesis. The improved therapeutic effects of MSCs on IH might be due to the ceRNA role of MIR155HG/miR-205.


Apoptosis , Hyperplasia , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Humans , RNA, Long Noncoding/genetics , Apoptosis/genetics , Cell Movement/genetics , Animals , Mesenchymal Stem Cell Transplantation/methods , Tunica Intima/pathology , Tunica Intima/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Male , Cell Survival/genetics , RNA, Competitive Endogenous
2.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727931

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Apoptosis , Breast Neoplasms , Cell Movement , Cell Proliferation , Hyaluronan Receptors , RNA, Small Interfering , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Humans , Apoptosis/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , RNA, Small Interfering/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Vimentin/metabolism , Vimentin/genetics
3.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727958

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Stem Cells/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Cell Survival/genetics , Cell Survival/drug effects , Signal Transduction/genetics , Cells, Cultured
4.
Technol Cancer Res Treat ; 23: 15330338241250298, 2024.
Article En | MEDLINE | ID: mdl-38706215

Objective: Ubiquitin-specific peptidase 39 (USP39) plays a carcinogenic role in many cancers, but little research has been conducted examining whether it is involved in head and neck squamous cell carcinoma (HNSCC). Therefore, this study explored the functional role of USP39 in HNSCC. Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins (DEPs) between the HNSCC tumor and adjacent healthy tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to assess the functional enrichment of DEPs. Immunohistochemistry was used to detect protein expression. The viability and migration of two HNSCC cell lines, namely CAL27 and SCC25, were detected using the cell counting kit-8 assay and a wound healing assay, respectively. Quantitative real-time PCR was used to detect the expression level of signal transducer and activator of transcription 1 (STAT1) mRNA. Results: LC-MS/MS results identified 590 DEPs between HNSCC and adjacent tissues collected from 4 patients. Through GO and KEGG pathway analyses, 34 different proteins were found to be enriched in the spliceosome pathway. The expression levels of USP39 and STAT1 were significantly higher in HNSCC tumor tissue than in adjacent healthy tissue as assessed by LC-MS/MS analysis, and the increased expression of USP39 and STAT1 protein was confirmed by immunohistochemistry in clinical samples collected from 7 additional patients with HNSCC. Knockdown of USP39 or STAT1 inhibited the viability and migration of CAL27 and SCC25 cells. In addition, USP39 knockdown inhibited the expression of STAT1 mRNA in these cells. Conclusion: Our findings indicated that USP39 knockdown may inhibit HNSCC viability and migration by suppressing STAT1 expression. The results of this study suggest that USP39 may be a potential new target for HNSCC clinical therapy or a new biomarker for HNSCC.


Cell Movement , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , STAT1 Transcription Factor , Squamous Cell Carcinoma of Head and Neck , Ubiquitin-Specific Proteases , Humans , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Cell Movement/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Line, Tumor , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Survival/genetics , Tandem Mass Spectrometry , Cell Proliferation , Chromatography, Liquid , Female , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Proteomics/methods
5.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 212-218, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650131

Many cancers, including prostate cancer, have miRNAs with altered expression levels. These miRNAs play a pivotal role in regulating cancer initiation, invasion, and metastasis. miRNAs are an important component in cancer diagnosis and therapy and can play a key role as biomarkers or chemotherapeutic agents.  This investigation aimed to show the effects of miR-375 on PCa. In this project, target prediction tools and the KEGG pathway were performed to determine the potential targets of miR-375. Transfection was performed using miR-375 mimic and inhibitor. The actions of miRNAs on cell viability and migration were examined in PCa cells. In addition, qRT-PCR was executed to evaluate changes in gene expression in the PI3K-mTOR pathway. The analyses exposed that the upregulation of miR-375 repressed the viability at 48 h. While stimulation of miR-375 did not repress the migration, suppression of miR-375 reduced the migration at 24 and 48 hours. The predicted target TSC1 gene is not directly targeted by miR-375. Interestingly, in response to PIK3CA increase, mTOR expression was suppressed in all cells except LNCAP cells. In conclusion, miR-375 has anti-proliferative and cell migration inhibitory effects in prostate cancer. However, studies demonstrate that miR-375 may have tumor suppressor and oncogenic effects when considering cell molecular differences.


Cell Movement , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , MicroRNAs , Prostatic Neoplasms , TOR Serine-Threonine Kinases , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Male , Cell Movement/genetics , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cell Survival/genetics , Cell Proliferation/genetics , Signal Transduction/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 13-21, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650161

MiRNA 200-c-3p has varying functions in different tumor types, whether tumor suppression or promotion. Comprehensive assessment of its function in non-small cell lung cancer (NSCLC) together with its effect on antitumor immune response have not been declared before. We aimed to explore the effect of replacement and suppression of miRNA 200-c-3p on non-small cell lung cancer and its impact on immune checkpoint function and subsequently antitumor immunity. MiRNA 200-c-3p mimic/inhibitor was transfected into the A549 cells. A 549 non-small cell lung cancer cells viability was done by trypan blue staining and 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flowcytometric analysis was done for apoptosis detection. Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to study its effect on relative gene expression and relative protein level of programmed cell death ligand 1 (PD-L1). Finally, co-culture with isolated and activated T cells was performed. Multiple comparisons were performed using one-way analysis of variance (ANOVA) followed by Tukey's multiple-comparison test. Decreased cell viability, increased apoptosis, reduced PD-L1 relative gene expression and its relative protein level, together with enhanced T cell cytotoxicity towards tumor cells were detected after miRNA 200-c-3p mimic transfection of A549 NSCLC cell line.  However, these results were reversed in miRNA 200-c-3p suppression. MiRNA 200-c-3p had a tumor suppressive effect in non-small cell lung cancer cells which might be through down regulation of PD-L1 relative gene expression, and it may be used as a new target to improve immune checkpoint dysfunction.


Apoptosis , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Down-Regulation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Apoptosis/genetics , Down-Regulation/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Survival/genetics , Genes, Tumor Suppressor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 54-60, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650156

Cervical cancer (CC) is the most common malignant tumor of female reproductive system. MiR-4319 has been identified as an anti-oncogene in various cancers. In the present study, role of miR-4319 in CC was identified. Colony formation, flow cytometer, wound healing, and transwell assays were used to detect CC cell proliferation, apoptosis, migration, and invasion. The expression of miR-4319 was decreased in clinical CC tissues and CC cell lines. Upregulation of miR-4319 suppressed cell viability, proliferation, migration, and invasion, and induced cell apoptosis in CC cells. Moreover, tuftelin 1 (TUFT1) was verified as a direct target of miR-4319, as confirmed by dual-luciferase reporter assay. Additionally, TUFT1 expression was remarkably increased in clinical CC tissues and CC cell lines and was negatively associated with miR-4319 expression. Furthermore, overexpression of TUFT1 partially restored the effects of miR-4319 mimic on cell viability, proliferation, migration, invasion, and cell apoptosis in CC cells. To conclude, miR-4319 played an anti-cancer role in the occurrence and development of CC, which might be achieved by targeting TUFT1.


Apoptosis , Cell Movement , Cell Proliferation , Dental Enamel Proteins , Gene Expression Regulation, Neoplastic , MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , Apoptosis/genetics , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism
8.
APMIS ; 132(6): 465-476, 2024 Jun.
Article En | MEDLINE | ID: mdl-38588560

Gestational diabetes mellitus (GDM) is a common metabolic condition during pregnancy, posing risks to both mother and fetus. CircRNAs have emerged as important players in various diseases, including GDM. We aimed to investigate the role of newly discovered circRNA, hsa_circ_0042260, in GDM pathogenesis. Using GSE194119 dataset, hsa_circ_0042260 was identified and its expression in plasma, placenta, and HG-stimulated HK-2 cells was examined. Silencing hsa_circ_0042260 in HK-2 cells assessed its impact on cell viability, apoptosis, and inflammation. Bioinformatics analysis revealed downstream targets of hsa_circ_0042260, namely miR-4782-3p and LAPTM4A. The interaction between hsa_circ_0042260, miR-4782-3p, and LAPTM4A was validated through various assays. hsa_circ_0042260 was upregulated in plasma from GDM patients and HG-stimulated HK-2 cells. Silencing hsa_circ_0042260 improved cell viability, suppressed apoptosis and inflammation. Hsa_circ_0042260 interacted with miR-4782-3p, which exhibited low expression in GDM patient plasma and HG-stimulated cells. MiR-4782-3p targeted LAPTM4A, confirmed by additional assays. LAPTM4A expression increased in GDM patient plasma and HG-induced HK-2 cells following hsa_circ_0042260 knockdown or miR-4782-3p overexpression. In rescue assays, inhibition of miR-4782-3p or overexpression of LAPTM4A counteracted the effects of hsa_circ_0042260 downregulation on cell viability, apoptosis, and inflammation. In conclusion, the hsa_circ_0042260/miR-4782-3p/LAPTM4A axis plays a role in regulating GDM progression in HG-stimulated HK-2 cells.


Apoptosis , Diabetes, Gestational , MicroRNAs , RNA, Circular , Adult , Female , Humans , Pregnancy , Apoptosis/genetics , Cell Line , Cell Survival/genetics , Diabetes, Gestational/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Placenta/pathology , RNA, Circular/genetics
9.
FASEB J ; 38(8): e23610, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38661000

Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-ßH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.


Diabetes Mellitus, Type 2 , Enhancer Elements, Genetic , Insulin-Secreting Cells , Zinc Transporter 8 , Humans , Zinc Transporter 8/genetics , Zinc Transporter 8/metabolism , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Cell Survival/genetics , Genetic Variation , Insulin/metabolism , Cell Line
10.
Cancer Med ; 13(9): e7187, 2024 May.
Article En | MEDLINE | ID: mdl-38686617

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs. OBJECTIVE: Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion. METHODS AND RESULTS: Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC. E2F1 and E2F8 RNA expression is mainly localized in proliferating cells in the developing pancreas and in malignant ductal cells in PDAC. Silencing of E2F1 and E2F8 in PANC-1 pancreatic tumor cells inhibited cell proliferation and impaired cell spreading and migration. Moreover, loss of E2F1 also affected cell viability and apoptosis with E2F expression in PDAC tissues correlating with expression of apoptosis and mitosis pathway genes, suggesting that E2F factors promote cell cycle regulation and tumorigenesis in PDAC cells. CONCLUSION: Our findings illustrate that E2F1 and E2F8 transcription factors are expressed in pancreatic progenitor and PDAC cells, where they contribute to tumor cell expansion by regulation of cell proliferation, viability, and cell migration making these genes attractive therapeutic targets and potential prognostic markers for pancreatic cancer.


Apoptosis , Carcinoma, Pancreatic Ductal , Cell Movement , Cell Proliferation , E2F1 Transcription Factor , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Cell Line, Tumor , Cell Movement/genetics , Animals , Repressor Proteins/genetics , Repressor Proteins/metabolism , Cell Survival/genetics , Mice
11.
Cell Cycle ; 23(3): 262-278, 2024 Feb.
Article En | MEDLINE | ID: mdl-38597826

Esophageal cancer (EC) is a common and serious form of cancer, and while DNA methyltransferase-1 (DNMT1) promotes DNA methylation and carcinogenesis, the role of F-box protein 32 (FBXO32) in EC and its regulation by DNMT1-mediated methylation is still unclear. FBXO32 expression was examined in EC cells with high DNMT1 expression using GSE163735 dataset. RT-qPCR assessed FBXO32 expression in normal and EC cells, and impact of higher FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with EMT-related proteins. The xenograft model established by injecting EC cells transfected with FBXO32 was used to evaluate tumor growth, apoptosis, and tumor cells proliferation and metastasis. Chromatin immunoprecipitation (ChIP) assay was employed to study the interaction between DNMT1 and FBXO32. HitPredict, co-immunoprecipitation (Co-IP), and Glutathione-S-transferase (GST) pulldown assay analyzed the interaction between FBXO32 and cyclin dependent kinase 9 (CDK9). Finally, the ubiquitination assay identified CDK9 ubiquitination, and its half-life was measured using cycloheximide and confirmed through western blotting. DNMT1 negatively correlated with FBXO32 expression in esophageal cells. High FBXO32 expression was associated with better overall survival in patients. Knockdown of DNMT1 in EC cells increased FBXO32 expression and suppressed malignant phenotypes. FBXO32 repressed EC tumor growth and metastasis in mice. Enrichment of DNMT1 in FBXO32 promoter region led to increased DNA methylation and reduced transcription. Mechanistically, FBXO32 degraded CDK9 through promoting its ubiquitination.


Cell Proliferation , DNA (Cytosine-5-)-Methyltransferase 1 , Epigenesis, Genetic , Esophageal Neoplasms , F-Box Proteins , Gene Expression Regulation, Neoplastic , Mice, Nude , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/metabolism , Humans , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Animals , Cell Proliferation/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , Cell Line, Tumor , Epigenesis, Genetic/genetics , Mice , DNA Methylation/genetics , Ubiquitination , Cell Movement/genetics , Apoptosis/genetics , Mice, Inbred BALB C , Cell Survival/genetics , Female , Male
12.
Front Immunol ; 15: 1345515, 2024.
Article En | MEDLINE | ID: mdl-38469292

Background: Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods: We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results: Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions: Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.


Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , B-Lymphocytes/metabolism , Cell Survival/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology
14.
Sci Adv ; 10(9): eadh8493, 2024 Mar.
Article En | MEDLINE | ID: mdl-38416825

N-MYC (encoded by MYCN) is a critical regulator of hematopoietic stem cell function. While the role of N-MYC deregulation is well established in neuroblastoma, the importance of N-MYC deregulation in leukemogenesis remains elusive. Here, we demonstrate that N-MYC is overexpressed in acute myeloid leukemia (AML) cells with chromosome inversion inv(16) and contributes to the survival and maintenance of inv(16) leukemia. We identified a previously unknown MYCN enhancer, active in multiple AML subtypes, essential for MYCN mRNA levels and survival in inv(16) AML cells. We also identified eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) as a key N-MYC target that sustains leukemic survival in inv(16) AML cells. The oncogenic role of eIF4G1 in AML has not been reported before. Our results reveal a mechanism whereby N-MYC drives a leukemic transcriptional program and provides a rationale for the therapeutic targeting of the N-MYC/eIF4G1 axis in myeloid leukemia.


Leukemia, Myeloid, Acute , Humans , N-Myc Proto-Oncogene Protein , Cell Survival/genetics , Leukemia, Myeloid, Acute/genetics , Carcinogenesis , Hematopoietic Stem Cells
15.
PLoS Genet ; 20(2): e1011171, 2024 Feb.
Article En | MEDLINE | ID: mdl-38408084

Defects in protein homeostasis can induce proteotoxic stress, affecting cellular fitness and, consequently, overall tissue health. In various growing tissues, cell competition based mechanisms facilitate detection and elimination of these compromised, often referred to as 'loser', cells by the healthier neighbors. The precise connection between proteotoxic stress and competitive cell survival remains largely elusive. Here, we reveal the function of an endoplasmic reticulum (ER) and Golgi localized protein Rer1 in the regulation of protein homeostasis in the developing Drosophila wing epithelium. Our results show that loss of Rer1 leads to proteotoxic stress and PERK-mediated phosphorylation of eukaryotic initiation factor 2α. Clonal analysis showed that rer1 mutant cells are identified as losers and eliminated through cell competition. Interestingly, we find that Rer1 levels are upregulated upon Myc-overexpression that causes overgrowth, albeit under high proteotoxic stress. Our results suggest that increased levels of Rer1 provide cytoprotection to Myc-overexpressing cells by alleviating the proteotoxic stress and thereby supporting Myc-driven overgrowth. In summary, these observations demonstrate that Rer1 acts as a novel regulator of proteostasis in Drosophila and reveal its role in competitive cell survival.


Drosophila , Membrane Glycoproteins , Animals , Drosophila/genetics , Drosophila/metabolism , Membrane Glycoproteins/metabolism , Proteostasis/genetics , Cell Survival/genetics , Golgi Apparatus/metabolism
16.
J Obstet Gynaecol ; 44(1): 2311658, 2024 Dec.
Article En | MEDLINE | ID: mdl-38348790

BACKGROUND: Human papillomavirus (HPV) is a risk factor for the occurrence of cervical cancer (CC). Here, we aimed to explore the role of HPV16 in CC and identify the underlying mechanism. METHODS: The expression of miR-23a, HPV16 E6/E7 and homeobox C8 (HOXC8) was measured by quantitative real-time PCR or western blot. Cell viability and migration were evaluated using cell counting kit-8, Transwell and wound healing assays. The targeting relationship between miR-23a and HOXC8 was revealed by dual-luciferase reporter assay. RESULTS: miR-23a was downregulated in HPV16-positive (HPV16+) CC tissues and HPV16+ and HPV18+ cells. Additionally, E6/E7 expression was increased in CC cells. Then, we found that E7, rather than E6, positively regulated miR-23a expression. miR-23a suppressed cell viability and migration, whereas E7 overexpression abrogated this suppression. miR-23a targeted HOXC8, which reversed miR-23a-mediated cell viability and migration. CONCLUSIONS: HPV16 E7-mediated miR-23a suppressed CC cell viability and migration by targeting HOXC8, suggesting a novel mechanism of HPV-induced CC.


Cervical cancer (CC) is a common gynaecological malignancy, and persistent human papillomavirus (HPV) infection, especially HPV16, is a main cause of CC. In this study, we explored the role of HPV16 in CC and the molecular mechanism. We used in vitro study to measure CC cell biological behaviours mediated by HPV16 E7, miR-23a and homeobox C8 (HOXC8). We found that HPV16 E7 promotes CC cell viability and migration. miR-23a expression is decreased in CC cells and inhibits cell viability and migration. HOXC8 is a target of miR-23a that reversed the effects on cellular processes caused by miR-23a. These results showed that miR-23a and HOXC8 may be the therapeutic targets of HPV16 E7-infected CC. What is more, our findings provide new insights into the progression of CC.


MicroRNAs , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16/genetics , Cell Line, Tumor , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Cell Survival/genetics , MicroRNAs/genetics , Homeodomain Proteins/genetics
17.
FEBS Lett ; 598(5): 503-520, 2024 Mar.
Article En | MEDLINE | ID: mdl-38281767

Cells remodel splicing and translation machineries to mount specialized gene expression responses to stress. Here, we show that hypoxic human cells in 2D and 3D culture models increase the relative abundance of a longer mRNA variant of ribosomal protein S24 (RPS24L) compared to a shorter mRNA variant (RPS24S) by favoring the inclusion of a 22 bp cassette exon. Mechanistically, RPS24L and RPS24S are induced and repressed, respectively, by distinct pathways in hypoxia: RPS24L is induced in an autophagy-dependent manner, while RPS24S is reduced by mTORC1 repression in a hypoxia-inducible factor-dependent manner. RPS24L produces a more stable protein isoform that aids in hypoxic cell survival and growth, which could be exploited by cancer cells in the tumor microenvironment.


Alternative Splicing , Hypoxia , Humans , Autophagy/genetics , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Survival/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
J Virol ; 98(2): e0188823, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38289104

Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.


Cytomegalovirus , Host Microbial Interactions , Mechanistic Target of Rapamycin Complex 1 , Monocytes , Protein Biosynthesis , RNA, Messenger , Humans , Apoptosis , Cell Survival/genetics , Cytomegalovirus/growth & development , Cytomegalovirus/pathogenicity , Cytomegalovirus/physiology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/transmission , Cytomegalovirus Infections/virology , Feedback, Physiological , Mechanistic Target of Rapamycin Complex 1/metabolism , Monocytes/cytology , Monocytes/metabolism , Monocytes/virology , Phosphatidylinositol 3-Kinases/metabolism , Polyribosomes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Sirtuin 1/biosynthesis , Sirtuin 1/genetics , Sirtuin 1/metabolism , Virus Internalization
19.
Int J Med Sci ; 21(2): 319-331, 2024.
Article En | MEDLINE | ID: mdl-38169645

Accumulating studies suggest that Huaier exerts anti-tumor effects through intricate mechanisms. Despite extensive research on its efficacy in lung cancer, further investigation is required to elucidate the molecular mechanism of Huaier. The involvement of long noncoding RNAs (lncRNAs) in the anti-lung cancer effects of Huaier remains unknown. In this study, we found Huaier suppressed cell viability, migration and invasion in non-small cell lung cancer (NSCLC) cells. LncRNA sequencing analysis revealed Deleted in lymphocytic leukemia 2 (DLEU2) to be significantly downregulated in Huaier-treated NSCLC cells. Furthermore, DLEU2 silencing was observed to suppress NSCLC progression, while DLEU2 overexpression attenuated the anti-tumor effects of Huaier in NSCLC, thereby promoting cell viability, migration and invasion of NSCLC. The ceRNA role of DLEU2 had been demonstrated in NSCLC, which directly interacted with miR-212-5p to rescue the repression of E74 Like ETS Transcription Factor 3 (ELF3) by this microRNA. Additionally, Huaier was found to regulate the expression of miR-212-5p and ELF3. Functionally, miR-212-5p inhibitor or ELF3 overexpression reversed the effects of DLEU2 silencing or Huaier treatment, resulting in increased colony formation, migration and invasion in NSCLC. Taken together, these results illuminate the mechanism underlying Huaier's anti-tumor effects via the DLEU2/miR-212-5p/ELF3 signaling pathway, which offers novel insights into the anti-tumor effects of Huaier and constitutes a promising therapeutic target for the treatment in NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/pathology , Cell Survival/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/pharmacology
20.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38255788

The identification of markers for early diagnosis, prognosis, and improvement of therapeutic options represents an unmet clinical need to increase survival in Non-Small Cell Lung Cancer (NSCLC), a neoplasm still characterized by very high incidence and mortality. Here, we investigated whether proline dehydrogenase (PRODH), a mitochondrial flavoenzyme catalyzing the key step in proline degradation, played a role in NSCLC tumorigenesis. PRODH expression was investigated by immunohistochemistry; digital PCR, quantitative PCR, immunoblotting, measurement of reactive oxygen species (ROS), and functional cellular assays were carried out. PRODH expression was found in the majority of lung adenocarcinomas (ADCs). Patients with PRODH-positive tumors had better cancer-free specific and overall survival compared to those with negative tumors. Ectopic modulation of PRODH expression in NCI-H1299 and the other tested lung ADC cell lines decreased cell survival. Moreover, cell proliferation curves showed delayed growth in NCI-H1299, Calu-6 and A549 cell lines when PRODH-expressing clones were compared to control clones. The 3D growth in soft agar was also impaired in the presence of PRODH. PRODH increased reactive oxygen species production and induced cellular senescence in the NCI-H1299 cell line. This study supports a role of PRODH in decreasing survival and growth of lung ADC cells by inducing cellular senescence.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Cell Survival/genetics , Proline Oxidase/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Reactive Oxygen Species , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Cellular Senescence/genetics
...